
ORIGINAL ARTICLE

Defining the Nature of Motion Perception
Deficits in Glaucoma Using Simple and

Complex Motion Stimuli

PETER KARWATSKY, OD, MSc, ARMANDO BERTONE, PhD, OLGA OVERBURY, PhD, and
JOCELYN FAUBERT, PhD
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ABSTRACT
Purpose. The purpose of this study is to determine the nature of motion perception deficits in primary open-angle
glaucoma by measuring the sensitivity of simple (luminance-defined) and complex (texture-defined) motion, the latter
requiring supplementary neural processing to be resolved. These findings will help address the possible extent of the
cortical damage in glaucoma that has been recently demonstrated by anatomic and physiological studies. They also serve
the purpose of establishing which motion paradigms would be most appropriate for assessing glaucoma-related functional
loss.
Methods. Direction-identification thresholds for first-order and second-order motion were measured for 26 patients with
primary open-angle glaucoma (for both phakic and pseudophakic) and 18 nonglaucomatous observers.
Results. The glaucomatous observers showed significantly increased motion thresholds for both first- and second-order
motion conditions when compared with nonglaucomatous observers. However, the relative increase in threshold for
first-order motion did not differ significantly from that of second-order motion.
Conclusions. These findings imply that there is no measurable higher-level cortical function damage caused by the
glaucomatous process because no greater loss in second-order motion was observed. Based on the results, we suggest that
motion paradigms used to assess functional loss in primary open-angle glaucoma should consist of simple, first-order type
stimuli to minimize potential confounds such as those introduced by both the normal and pathologic aging process on
complex motion processing (i.e., perimetry using complex motion stimuli).
(Optom Vis Sci 2006;83:466–472)
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Recent studies have demonstrated that glaucoma may cause
changes in the Lateral Geniculate Nucleus and cortical re-
gions of the brain as demonstrated by cell shrinkage and

loss.1,2 There is also evidence from metabolic and neurochemical
studies that the central nervous system is affected in glaucoma.3–5

Given these findings, it becomes important to determine whether
both low- and higher-level perceptual losses are induced by glau-
coma-related damage.

A number of psychophysical studies have focused on the devel-
opment of early diagnostic methods that assess visual field loss in
open-angle glaucoma.6 Such defects associated with glaucoma are
presumed to originate from ganglion cell destruction in the reti-
na.7–9 Specifically, such studies indicate that M-ganglion cells,

which represent approximately 8% to 10% of the retinal ganglion
cells in the retina,10 are lost preferentially during the glaucomatous
process, particularly in the early stages of the disease7,8 (see also
other references for an alternate view11–13). An attenuation of both
the pattern electroretinogram14 and low-contrast visual-evoked
potentials,15 both of which have been argued to be stimuli that bias
the magnocellular pathway, have been shown in glaucoma and
attributed to M-cell loss. Decreased diffuse flicker sensitivity16,17

and temporal modulation visual fields18–20 lowered peripheral dis-
placement thresholds,21 and defects in spatiotemporal contrast
sensitivity22 in glaucomatous eyes are further indicators of magno-
cellular pathway degeneration. Because M-ganglion cells are be-
lieved to be involved in the processing of temporal information and
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to be the retinal origin regarding motion information process-
ing,23,24 the evaluation of motion perception in glaucoma has been
used as an investigative predictor of the disease. In effect, several
studies have associated motion perception impairments with ad-
vancing glaucoma. Direction-discrimination thresholds for global
motion cues have been shown to be elevated in patients with pri-
mary open-angle glaucoma (POAG) and for persons with ocular
hypertension (OHT),25 and motion perimetry has revealed glau-
comatous defects that were not observable using conventional pe-
rimetry.26,27 Loss of sensitivity to motion-defined form (patients
with POAG and those with OHTs28), elevation of perimetric mo-
tion thresholds (patients with POAG29), and loss in motion coher-
ence perimetry26 have all been demonstrated. These and other
findings suggest motion perception is impaired in the early stage of
the disease (see 30 for review).

Although different motion testing paradigms show glaucoma-
related loss, they do not solicit identical processing requirements.
For instance, global motion (or motion coherence) necessarily re-
quires complex spatiotemporal integration within extrastriate cor-
tical areas,31,32 whereas simple stimuli (luminance-defined or even
flicker thresholds) solicit higher-level motion processing to a much
lesser extent. If we are to assume that glaucoma is primarily an optic
nerve disease, then why use complex motion stimuli to assess reti-
nal–neural function? Using motion paradigms that necessitate
complex perceptual processing may reduce the diagnostic specific-
ity of the measures because performance on such tests may be
contaminated by higher-level neural changes such as those pre-
sented during normal aging33 in addition to glaucoma-related ret-
inal dysfunction. Complex motion processing has been shown to
be affected during the normal34 and pathologic aging process35–39

to a greater extent than for simple motion types.34,38,39 On the
other hand, using complex motion paradigms might be of interest
if we assume that there is higher-level cortical damage in glaucoma.
The recent evidence showing that cortical cells primarily associated
with the nonglaucomatous eye can also show anatomic changes
implies that higher-order mechanisms may also be affected in this
disease.2 If this were the case, using complex motion paradigms as
opposed to simpler techniques might increase the sensitivity of the
measure. Given the demographic of most patients with glaucoma,
the selection of proper motion stimuli has important practical and
interpretive implications.

The main purpose of this study was to determine whether mo-
tion perception deficits in POAG are the consequence of only a
low-level retinal V1 system or includes additional higher-level cor-
tical processing; in essence, to investigate the nature of motion
perception deficits found in POAG. This was done by measuring
direction-identification thresholds to first-order (or luminance-
defined) and second-order (texture-defined) motion stimuli.
These stimuli were chosen because contemporary motion models
differentiate first- and second-order motion processing by the level
at which they are first processed along the motion pathway.40–44

Luminance-defined first-order motion processing begins in the
retina and is followed by standard motion analysis selective mech-
anisms operating in the primary visual cortex that process the local
luminance variations in the retinal image.45–48 For this reason,
first-order information is considered to be a “simple” type of visual
information. On the other hand, additional nonlinear processing
of the second-order motion signals is required (i.e., signal rectifi-

cation or response squaring) before standard motion analysis can
resolve the direction of this class of motion.41,44 Such additional
processing has been attributed to the cortex,49–52 suggesting that
second-order motion perception necessarily involves more cortical
processing. For this reason, second-order visual information is con-
sidered a more “complex” type of visual information because it
requires the implication of larger neural circuitry to be perceived.
These two classes of visual information were used because a large
body of psychophysical evidence has demonstrated that they are
initially processed by neural mechanisms varying in complexi-
ty40,41,44,53 and are sensitive to subtle neural dysfunctioning of
visual information processing.33,34

The techniques used in this article have been shown to be ex-
tremely sensitive to subtle cortical alterations. For example, normal
aging has been shown to affect second-order thresholds to a signif-
icantly greater extent than first-order thresholds, and this, in non-
pathologic (healthy) aging where changes, if they exist, must be
much more subtle than disease processes.34 This paradigm has also
been very useful to demonstrate subtle perceptual effects in au-
tism54,55 and fragile X syndrome.56 Therefore, this method has
been proven to be very effective to tease out whether there are
condition-specific subtle changes in cortical processes requiring
larger neural networks.33

A decrease in the perception of both first- and second-order
drifting stimuli is expected in POAG given the primary mecha-
nism for glaucoma, that being retinal ganglion cell loss. If the
glaucomatous process governing open-angle glaucoma is in any
way related to higher neural dysfunctions, then damage to higher
cortical areas is expected, leading to a larger threshold elevation for
the perception of second order. Alternatively, if there is no relative
difference between the magnitude of loss for first- and second-
order stimuli, we must conclude that the glaucoma-related neural
damage remains at a low level and that future assessment of glau-
coma-related motion sensitivity loss should use testing paradigms
that limit cortical processing (simple motion).

METHODS
Observers

A total of 44 observers participated in this study (mean age, 70.5
� 5.37 years; range, 61–78 years), all of which were recruited from
among the patients of the Ophthalmology Department of the Sir
Mortimer B. Davis Montreal Jewish General Hospital. Observers
were considered to have glaucoma after a diagnosis or confirmation
of diagnosis by the examining ophthalmologist at the patient’s
most recent visit. All observers with glaucoma were undergoing
treatment. The observers were placed into one of four experimental
groups: POAG/phakic (n � 15; mean age, 70.20 � 5.85 years),
POAG/pseudophakic (n � 11; mean age, 71.09 � 6.09 years),
nonglaucomatous/phakic (n � 10; mean age, 70.00 � 4.29 years),
or nonglaucomatous/pseudophakic (n � 8; mean age, 71.25 �
4.86 years). Both phakic and pseudophakic observers with and
without glaucoma were tested to evaluate whether lenticular senes-
cence would contribute to loss in motion sensitivity irrespective of
glaucoma. Control participants were defined as having no ocular
pathologies and taking no long-term ocular medication. Mild scle-
rosis of the lens was permitted as long as the subject met the
minimal visual acuity requirements. Minimal corrected visual acu-
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ity was 20/40 and all of the observers had normal color vision as
measured by Farnsworth D-15 color plates. The pupil sizes of all
observers were measured. Testing was done monocularly with the
observers’ best correction in place. All participants were naı̈ve to
the purpose of the study and none were experienced psychophys-
ical observers. In accordance with the tenets of the Declaration of
Helsinki, informed consent was obtained from each participant
before testing began.

Apparatus and Display

The motion stimuli were presented using a Power Macintosh
7300/200 computer and presented on a standard Seiko Instru-
ments CM 1445 screen (refresh rate of 67 Hz, GEAC Canada Ltd,
Ontario, Canada) that was gamma-corrected using a color look-up
table. The screen resolution was 640 � 480 pixels and its mean
luminance was 38 cd/m2 in which Lmin and Lmax were 3.6 cd/m2

and 80 cd/m2, respectively. Stimuli generation and presentation
were controlled using the VPixx graphics program (www.vpixx.
com). Luminance and chromaticity measurements were made us-
ing a Minolta Chromameter (CS-100, Folio Instruments Inc.,
Ontario, Canada).

Stimuli

All motion stimuli were presented to observers within a circular
region at the center of the display subtending a visual angle of 10°
in diameter when viewed from a distance of 67 cm. The stimuli
consisted of first- and second-order translating patterns. The first-
order motion stimuli were luminance-modulated noise patterns
produced by adding static grey-scale noise to modulating sine
waves, in this case a vertical sinusoid. The noise consisted of dots (1
pixel � 1 pixel measuring approximately 2.3 arc min) with indi-
vidual luminances randomly assigned as a function of sin (x) in
which (x) ranged from 0 to 2�. The contrast (luminance modu-
lation depth) of the first-order patterns was manipulated by vary-
ing the amplitude of the modulating sine wave. The amplitude of
the luminance modulation for the first-order patterns could be
varied from 0.0 to 0.5 defined as:

luminance modulation depth � (Lmax � Lmin)/(Lmax � Lmin)

where Lmax and Lmin refer to the average highest and lowest local
luminances in the pattern. The first-order luminance modulation
levels used in the constant stimuli presentations were 0.04, 0.02,
0.01, 0.005, 0.0025, and 0.00,125. These levels were chosen based
on previous studies using similar stimuli.54

The second-order stimuli were texture-modulated noise pat-
terns produced by multiplying rather than summing the same
modulating sine waves to the grey-scale noise. The depth of the
texture modulation (contrast modulation depth) was manipulated
by varying the amplitude of the modulating sine wave. The ampli-
tude of the sinusoid therefore defined the contrast of the pattern
and could be varied within a range of 0.0 and 1.0 defined as:

contrast modulation depth � (Cmax � Cmin)/(Cmax � Cmin)

where Cmax and Cmin are the maximum and minimum local con-
trasts in the pattern (Fig. 1). Second-order contrast modulation
levels used during the constant stimuli procedures were 1.0, 0.333,

0.143, 0.111, and 0.059. The spatial and drift frequency was 1
cycle per degree (cpd) and 2 Hz, respectively.

Procedure

Participants were tested individually in a dimly lit room and
viewed the monitor monocularly using the eye with best visual
acuity. The procedure was explained to them and a practice session
followed to familiarize the participants with the procedure and
confirm that they were able to complete the task. During the actual
testing session, each participant was presented with trials consist-
ing of first- and second-order stimuli moving either to the left or to
the right for 750 ms. The method of constant stimuli was used to
measure direction-identification thresholds for each motion con-
dition that included six levels of luminance modulation (ranging
from 0.04 to 0.00,125) and five levels of contrast modulation
(ranging from 0.5 to 0.03,125). For each motion condition, the
stimuli were presented 10 times in either direction (left and right)
at each level of modulation for a total of 20 trials at each level of
modulation. Participants were asked to identify the direction of
motion by pressing either of two buttons on a keypad (two alter-
native forced choices). All stimuli were presented foveally at the
same spatial location on the monitor. Participants were instructed
to keep their gaze on a central fixation point throughout experi-
mentation. Finally, Weibull57 functions were fitted to the data to
calculate direction-identification thresholds at 75% correct level of
performance.

RESULTS

Because first- and second-order absolute motion thresholds are
defined by different attributes (i.e., luminance and texture modu-
lation, respectively), comparisons of the mean differences between
the two motion classes is not informative nor is the direct compar-
ison of first- and second-order thresholds for the same patient. For
this reason, first- and second-order motion-identification thresh-
olds were analyzed separately.

Effect of Lenticular Senescence on Motion
Sensitivity

As already mentioned, both phakic and pseudophakic partici-
pants with and without glaucoma were evaluated to determine

FIGURE 1.
First- (left panel) and second-order (right panel) motion stimuli used in the
present study.
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whether lenticular senescence would contribute to loss in motion
sensitivity independently of the presence of glaucoma. Figure 2A
shows the mean direction-identification thresholds for phakic
(white bars) and pseudophakic (black bars) observers with and
without glaucoma for the first-order motion condition. A two-way
analysis of variance (ANOVA) (group � lenticular senescence)
revealed no significant difference in first-order direction-identifi-
cation thresholds between phakic and pseudophakic observers in
either the glaucoma (F1,24 � 0.428, p � 0.05) or the control group
(F1,16 � 0.454, p � 0.05). A separate two-way ANOVA was used
to compare the direction-identification thresholds between phakic
and pseudophakic observers for the second-order motion condi-
tion. As was found for the first-order motion type, phakic and
pseudophakic observers showed no significant difference in direc-
tion-identification thresholds for either glaucomatous (F1,24 �
0.432, p � 0.05) or control participants (F1,16 � 0.834, p � 0.05)
for the second-order motion condition (Fig. 2B). Because the di-
rection-identification thresholds were not affected by lenticular
senescence for either glaucomatous and control observers for both
motion conditions, the thresholds were collapsed across lens con-
dition and averaged. These results demonstrate that, unlike mini-
mum motion color thresholds,58,59 lenticular senescence does not

affect motion sensitivity in our conditions for either luminance- or
texture-defined motion information for observers with and with-
out glaucoma.

Effect of Glaucoma on First- and Second-Order
Motion Sensitivity

After the data were collapsed across lens condition, 26 observers
fell into the glaucoma category (mean age, 70.56 � 5.85 years;
range, 61–78 years) and 18 nonglaucomatous observers served as
age-matched control subjects (mean age, 70.56 � 4.46 years;
range, 63–78 years). Figure 3 illustrates the direction-identifica-
tion thresholds for first-order (left panel) and second-order (right
panel) motion conditions for both glaucomatous and control par-
ticipants (phakic and pseudophakic patients included in each ex-
perimental group). Statistical analysis of the grouped data showed
that direction-identification thresholds were significantly higher
for the observers with glaucoma when compared with normal ob-
servers for both the first (F1,42 � 19.114, p � � 0.05) and second-
order (F1,42 � 12.787, p � 0.05) motion conditions. More im-
portantly, the magnitude of the threshold elevation was similar for
both motion conditions; 1.56 times greater for the first-order class
(from 0.005 to 0.0078) and 1.40 times greater for the second-order
class (from 0.1787 to 0.2506).

Effect of Retinal Illumination on First- and Second-
Order Motion Sensitivity

Optical factors such as reduced retinal illumination caused by
decreased pupil size contribute to age-related decline in contrast
sensitivity.60 To ensure that differences found in motion sensitivity
were not a consequence of reduced retinal illumination, the pupil
size of each observer comprising the different experimental groups
was measured and compared. On average, each experimental
group had comparable mean pupil sizes: POAG/phakic group (n
� 15; mean pupil size, 3.20 � 0.68 mm), POAG/pseudophakic
group (n � 11; mean pupil size, 3.00 � 0.63 mm), nonglaucoma-
tous/phakic group (n � 10; mean pupil size, 3.30 � 0.67 mm),

FIGURE 2.
Mean first-order (A) and second-order (B) direction-identification thresh-
olds for phakic (n � 25, 15 glaucomatous and 10 nonglaucomatous) and
pseudophakic (n � 19, 11 glaucomatous and 8 nonglaucomatous) par-
ticipants for both the control and glaucoma conditions.

FIGURE 3.
Mean first-order and second-order motion direction-identification thresh-
olds for control and glaucomatous observers. The first-order scale is
shown on the left of the figure and the second-order scale is shown on the
right.
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and nonglaucomatous/pseudophakic group (n � 8; mean pupil
size, 3.00 � 0.53 mm). Additional statistical analysis demon-
strated that pupil size (4 mm, n � 12; 3 mm, n � 26; and 2 mm,
n � 6) did not significantly affect direction-identification thresh-
olds for either the first-order (F2,41 � 0.971, p � 0.05) or second-
order (F2,41 � 1.824, p � 0.05) motion, irrespective to which
group the patient belonged to.

DISCUSSION
Simple and Complex Motion Perception in
Glaucoma

The purpose of this study was to investigate the nature of mo-
tion perception impairment in POAG by measuring the sensitivity
of motion stimuli varying with respect with the amount of neural
processing involved in resolving their motion direction. Our gen-
eral findings are consistent with previous studies demonstrating
decreased motion perception sensitivity for patients with advanc-
ing glaucoma.21,26,28,29,61 In the present study, direction-identifi-
cation thresholds for both simple (first-order) and complex (sec-
ond-order) motion types were significantly elevated for patients
with glaucoma. One implication of this finding is that the de-
creased sensitivity to luminance-defined first-order motion stimu-
lus, which is processed in part by the retina, is in accordance with
M-cell pathway damage in glaucoma.15,17,21 Increased first-order
motion thresholds suggest ganglion cell loss and damage within the
retina itself. Our results also demonstrated a significant increase for
second-order motion thresholds for the observers with glaucoma.
However, this difference in threshold did not exceed the difference
in threshold measured between the glaucoma and normal observ-
ers for the first-order motion condition. The finding that the com-
plex-motion perception (that is mediated by a more complex neu-
ral network) was not selectively affected by glaucoma implies that
there is no measurable higher-order cortical damage caused by the
glaucomatous process, at least at early corticovisual areas (areas V2
and V3) where second-order motion is believed to solicit more
processing than first-order mechanisms.40,50,52

Aging and Its Relation to Motion Perception in
Glaucoma

Aging affects both peripheral and central aspects of visual infor-
mation processing.33,62,63 For example, gradual decline of tempo-
ral modulation visual fields,64 form-from-motion processing,65

and temporal processing speed66 have been shown to be associated
with an increasing age, as has global motion perception.35 Previous
studies using motion stimuli similar to those used in the present
study have demonstrated that aging (i.e., in the absence of eye
disease) affects the perception of complex motion stimuli to a
greater extent.34 Together, these findings suggest less efficient neu-
ral processing of complex visual motion information in the elderly.
The present finding that the relative first- and second-order mo-
tion loss is similar in our glaucoma subjects suggests that these
findings are not the consequence of normal aging, which would
have resulted in a greater loss for the more complex, second-order
stimuli. At least for the luminance and texture-based motion stim-
uli used in the present study, both lenticular senescence and retinal
illumination had no significant effect on motion direction discrim-

ination. Although the mean pupil size of our experimental groups
was very similar, no correlation was found between pupil size and
motion sensitivity when analyzed irrespective of group inclusion.
Similarly, lenticular senescence did not affect sensitivity to the
motion stimuli, whether they were defined by spatiotemporal vari-
ations in luminance (first-order) or texture (second-order). Based
on these findings, we suggest that the decreased motion sensitivity
demonstrated between the control and glaucoma groups were not
confounded by either lenticular senescence and/or retinal illumi-
nation.

Clinical Application of Findings

The interpretation of results from studies using existing psycho-
physical tests used to detect early stages of glaucoma has been
questioned, particularly on their ability to selectivity isolate either
M or P system functioning.67,68 The present study does not at-
tempt to do so. Rather, by using two different motion stimuli
differentiated only by the neural processing involved in resolving
their motion direction (i.e., same spatial and temporal character-
istics), an assessment of M pathway functioning at two different
levels was possible, the second-order motion condition implicating
increased neural processing. The finding that glaucomatous indi-
viduals were equally less sensitive to first-order and second-order
motion stimuli has important clinical considerations regarding the
type of stimuli to be used in glaucoma studies. Although both
simple and complex motion analysis is initially based on the effi-
cient spatiotemporal functioning of retinal ganglion cells, complex
motion analysis (i.e., second-order motion, global motion) usually
involves neurointegrative processing beyond the primary visual
cortex (i.e., V2/V3 in the case of second-order motion and the
medial temporal [MT] area in the case of global motion percep-
tion). Therefore, motion testing using complex motion stimuli like
random dot or global motion25–27,29 is dependent on both simple
and complex neural analysis. If this is the case, there is an increased
probability that elevated random dot/global motion may be the
result of neural dysfunction, if present, in addition to any ganglion
loss caused by glaucoma. As already mentioned at the beginning of
this article, an example of such a scenario would be a glaucomatous
person with dementia (i.e., Alzheimer disease). Complex motion
perception has been shown to correlate with age34 and significantly
elevated for persons with dementia.35–39 Given the similar demo-
graphics shared by persons with dementia and presenting with
glaucoma, the sensitivity of global motion may be confounded by
neural dysfunction resulting in, at the least, a less specific diagnos-
tic method for assessing POAG.

CONCLUSIONS

Because our findings point to glaucoma as not involving higher-
order motion sensitive cortical mechanisms, motion testing using
simple stimuli that are processed at the eye and in the primary
visual cortex (i.e., simple motion) may be an advantageous alter-
native with respect to its specificity for the early detection of the
glaucomatous process.
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