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Abstract-In this paper, a model is proposed for bilateral symmetry detection in images consisting of 
dense arrangements of local features. The model is elaborated on the basis of a psychophysical experiment 
showing that grouping precedes and facilitates symmetry detection. The proposed computational model 
consists of three stages: a grouping stage, a symmetry-detection stage, and a symmetry-subsumption 
stage. Reliance upon a preliminary grouping stage enables a significant reduction of the computational 
load for detecting symmetry. An implementation of the model is described, and results are presented, 
showing a good agreement of the model performance with human symmetry perception. 

1. INTRODUCTION 

In this paper, we propose a model for global bilateral symmetry detection in dense 
images. Dense arrangements of local features, such as dots or oriented segments, 
are encountered in various situations such as images of textured scenes, brightness 
gradient fields, stereo disparity fields, motion flow fields, and Glass patterns. 

Different classes of symmetry may be present in an image: bilateral (also known 
as mirror symmetry), rotational, or repetitive. Multiple symmetries, Le. identities 
under more than one transformation, may be also present. Unlike its mathematical 
equivalent, visual symmetry may be characterized by a variable degree of exactness. 
It may be approximate, incomplete (missing elements), and apply only to restricted 
regions of the image. 

Symmetry relations can be local or global. Local symmetry refers to small neigh- 
borhoods of the image, and can usually be detected through a limited number of 
comparisons between nearby features. 
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extents (although usually not affecting the entire image) and requires an examina- 
tion of far-away image elements, followed by a comparison stage that involves the 
establishment of symmetry relations between compatible elements. 

Since introduced by Mach (1 906/ 1959), symmetry detection in images has drawn 
considerable attention in terms of both experimental studies and computational models. 
This interest probably comes from the fact that symmetry could be helpful in the 
accomplishment of a large number of visual tasks. 

For instance, symmetry might be used for shape representation, either by provid- 
ing a means for efficient encoding of pictorial information (Attneave, 1954), or by 
facilitating the establishment of object-centered representations involving perceptual 
reference frames (Palmer, 1983). Several representations based on local symmetry 
have been proposed in computer vision, such as the Symmetrical Axis Transform 
(Blum and Nagel, 1978), the Smoothed Local Symmetry Transform (Brady, 1983), 
and the Local Rotational Symmetry Transform (Fleck, 1986). Recently, Subirana- 
Vilanova (1990) proposed a method to extract curved axes of symmetry from an 
image, for the efficient description of object shapes. 

Symmetry might also facilitate the inference of the 3D structure of symmetrical ob- 
jects from their image projections. Kanade and Kender (1983) suggest a method that 
uses the amount of symmetry skewness of projected object contours. Nalwa (1989) 
uses local bilateral symmetry in line drawings, and its invariance under changes of 
viewpoint under orthographic projection, to infer the presence of surfaces of revolu- 
tion. Ulupinar and Nevatia (1 988) analyze the constraints of two kinds of symmetry, 
parallel and bilateral, under orthographic projections, to characterize zero-Gaussian 
curvature surfaces. 

Symmetry has been also used for several other tasks, such as detection of interest 
points in an image (Reisfeld et al., 1990), and efficient image encoding (Kumar et al., 
1983). It was also found to be useful in other cognitive tasks, such as evaluation of 
pattern interest, complexity and pleasingness (Day, 1968), numerosity judgments in 
patterns (Howe and Jung, 1987), and memory encoding (Attneave, 1955). Recently, 
Leyton ( 1992) proposed a general theory of human perception according to which 
symmetry plays a central role in the cognition of shape. Through a series of principles 
relating such notions as symmetry, curvature and morphogenesis, he showed that 
symmetry constitutes a fundamental element in shape-history recovery, and thus in 
shape memorization. 

Symmetry has been also considered by many to be a fundamental grouping prop- 
erty of perceptual organization, as suggested by the Gestalt psychologists. Elements 
sharing symmetry relations tend to aggregate and be perceived as figure rather than 
ground. However, the domination of symmetry by other grouping properties, such 
as convexity and good continuation, demonstrates the weakness of the organizational 
power of this property. Recent studies (Jenkins, 1983; Pomerantz and Kubovy, 1986; 
Pashler, 1990) call into question the role of symmetry as a strong grouping property. 
They suggest rather that symmetry detection could operate among features obtained 
from other grouping properties, thus implying a precedence of grouping over symme- 
try perception. 
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In this paper, we propose to elucidate this question by studying the strategies used 
by the visual system to detect global bilateral symmetry in dense images. As Sec- 
tion 2.1 reveals, two separate mechanisms may exist for symmetry detection, one for 
simple shapes and another one for dense patterns (Julesz, 1971); here we concentrate 
on the latter. The problem of detecting global symmetry in dense images has not re- 
ceived much attention, and some interesting issues have not been studied; in particular 
the strategy followed by the visual system to integrate non-central, non-contiguous 
symmetry information in dense images. In Section 2.2, we present a psychophysical 
experiment that we conducted to investigate this issue. Results of our experiment, in 
agreement with recent studies (Jenkins, 1983; Pomerantz and Kubovy, 1986; Pashler, 
1990), show that grouping facilitates and actually precedes symmetry detection. 

We also propose a computational model for global symmetry detection in dense 
images. This model, elaborated on the basis of the psychophysical experiment reported 
in Section 2.2, is presented in detail in Section 3. The proposed model consists of three 
stages: a grouping stage, in which neighboring compatible elements are aggregated, 
a comparison stage, in which clusters formed in the grouping stage are systematically 
compared to detect local axes of symmetry, and a subsumption stage, in which local 
axes are merged into global ones. The implementation details of the model and results 
are reported in Section 4, showing that the model performance agrees in principle with 
human symmetry perception. The paper ends with a discussion of further issues that 
might be investigated. 

b 
2. HUMAN SYMMETRY PERCEPTION IN DENSE IMAGES 

2.1. Previous work 

Some aspects of human symmetry perception in the case of complex high-frequency 
patterns have been studied by Julesz (1966, 1971; see also Julesz and Chang, 1979), 
and in the case of moderately complex random-dot patterns (100 dots) by Barlow and 
Reeves (1979). Barlow and Reeves’ results indicate that approximate symmetry can 
still convey the visual impression of symmetry, provided the deviation from exact 
symmetry is not too large. They suggest that the mechanism of symmetry detection 
is not a highly accurate one, and considers dots positioned at 1t6 arcmin of visual 
angle from the exact symmetrical position as contributing to the symmetry effect. 
The authors also studied the effects of introducing violations (i.e. suppression) of 
symmetry at different locations in the pattern, and of changing the location of the 
axis of symmetry. They found that violations are more easily detected near the axis 
of symmetry, and that symmetry perception becomes less sensitive when the location 
of the axis is not central. Jenkins (1982) also discusses the importance of the central 
region near the axis of symmetry. According to his conclusions, for completely 
symmetrical images, only the symmetry information located within a strip of 1.1 deg 
of visual angle centered on the axis of symmetry is exploited by the human visual 
system. Outside of this strip, symmetry information does not contribute to symmetry 
detection when the symmetrical portions are contiguous. All the preceding results 
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were obtained in experimental conditions involving brief exposure times (of the order 
of 100 ms). Other findings reported by Julesz (1971) indicate that bilateral symmetry 
is detected more quickly than rotational symmetry, and that vertical symmetry is 
detected faster than horizontal symmetry. Also, multiple symmetry (with respect to 
more than one axis at the same time) is detected faster than simple symmetry (one axis 
only). Zucker (1986) suggests the presence of two separate mechanisms in low-level 
vision, one for contour detection, the other for texture analysis, thus implying that 
symmetry detection in textures would be accomplished by a different process than the 
one used in contour images. Julesz (1971) also suggests the existence of two different 
mechanisms for symmetry perception. 

Given that global symmetry relations often involve non-adjacent symmetrical re- 
gions, it would be of particular interest to determine how non-central, non-contiguous 
symmetry information is detected by the visual system. In such cases, the preceding 
results about the importance of the region near the axis of symmetry probably do 
not apply, since special grouping configurations along the axis of symmetry are not 
created with non-contiguous symmetry regions. Another important issue is the pro- 
cessing time required for symmetry detection. It might be that, for certain conditions, 
symmetry detection requires longer periods of time (of the order of 1 s). Even if 
the aforementioned experiments show that, for particular conditions, symmetry can 
be detected with brief exposure times, detection performance might be different for 
more typical vision situations, involving longer processing times. 

2.2. Experiment with human symmetry detection 

Bilateral symmetry can be defined as the reflection of a region about a given axis. In 
symmetry-detection studies with dense patterns (e.g. random dots), symmetrical im- 
ages generally are created by reflecting one half of the image about a central vertical 
axis. Patterns generated according to this method usually contain salient grouping 
configurations along the central axis. An example of a figure containing such con- 
figurations can be seen in Fig. 1. Results of an experiment on symmetry detection 
using this kind of image indicate that subjects probably were using the presence of 
central coherent features as a clue to discriminate between symmetrical and asym- 
metrical patterns (Jenkins, 1983). This observation suggests that a preliminary cluster 
formation (grouping) stage might precede, or at least facilitate, symmetry detection. 

In natural environments, symmetrical regions are not always contiguous, and there- 
fore do not always contain central grouping configurations to facilitate symmetry 
detection. On the other hand, non-contiguous regions of symmetry often can be 
segregated from the background, and thus contain some form of grouping. It is rea- 
sonable to suppose that texture-related grouping could be used by the visual system to 
facilitate the symmetry-detection process for non-contiguous regions. In this section, 
we report the results of a psychophysical experiment that we conducted in order to 
investigate the effect of grouping on symmetry detection. The goal of the study was 
to establish the strategy followed by the visual system in order to elicit non-central, 
non-contiguous symmetry information from dense images, and to discover how the 
system deals with the computational load imposed by global symmetry detection. 
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Figure 1. Dense random-dot image with grouping configurations along the central vertical axis of sym- 
metry. 

The experiment compared symmetry-detection performance when a significant 
)amount of grouping was possible in the regions of symmetry by means of texture 
segregation (grouping condition), and when it was not (no-grouping condition), thus 
reducing the grouping possibilities. A reasonable amount of time (of the order of 
1 s) was given to the subject in order to obtain results applicable to typical vision 
situations, as opposed to more constrained situations with brief exposure times (of 
the order of 100 ms). The stimuli consisted of dense images of oriented segments 
for which grouping was performed on the basis of the similarity of orientation of 
neighboring segments. Texture segregation, and thus grouping, was produced when 
segments inside a symmetry region had a different orientation from the background 
segments. Therefore, for the no-grouping condition, background segments and seg- 
ments inside regions of symmetry had the same orientation, while for the grouping 
condition they had different orientations. The segment orientations in corresponding 
regions were always symmetrical and the subjects had to verify whether or not the 
position of the segments inside the regions were symmetrical. 

The detection task was not simply a case of orientation discrimination of the texture 
segregation components; segment positions inside the regions of symmetry had to be 
compared. Detection performance was measured at three different distances from the 
central axis of symmetry. In the first case, the regions of symmetry were adjacent. 
In this situation, in addition to the controlled grouping /no-grouping factor, grouping 
configurations were created along the central axis of symmetry for the two condi- 
tions. Therefore, a significant difference in detection performance between the two 
conditions was not expected. In the second case, the regions of symmetry were posi- 
tioned in the middle of each half image. In this situation, a significant difference in 
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detection performance was expected since only the controlled grouping /no-grouping 
factor was involved. For the third case, the regions of symmetry were located at the 
outer extremities of the image. In this situation, additional grouping effects might 
have been caused by segregation at the texturehon-texture borders of the image. 

2.2.1. Method. 

Stimuli. Computer-generated images were presented, on the center of a VGA mon- 
itor (640 by 480 pixels) measuring 42 cm by 31 cm, to subjects at a viewing distance 
of 57 cm from a fixation point placed in the middle of the screen. The mean lumi- 
nance of the screen was 50 cd m-2. An 80386 IBM computer running at 33 MHz 
with an 80387 math coprocessor was used to generate the images in real time. A 
chin-rest facilitated stabilization of head position and an I-SCAN system with infrared 
camera was used to monitor eye movements. Subjects' responses were recorded with 
the mouse of the computer: the left button corresponded to a yes response and the 
right button to a no response. 

Images were made of 1000 white oriented segments on a black background. Image 
size was 26.4 by 26.4 deg of visual angle and the two regions inside each image were 
6.6 by 13.2 deg. The three values for the distance between the regions were 0, 6.6, 
and 13.2 deg. Each stimulus could represent one of the two following types of images 
with one of the two types of grouping. Figure 2 shows examples of the stimuli that 
were used. ,

Symmetrical image: the position and orientation of segments inside the regions 
were symmetrical about the central vertical axis of symmetry, and background 
segments were randomly located outside the regions. 

• Asymmetrical image: the orientation but not position of segments inside the 
regions were symmetrical about the axis, and background segments were ran- 
domly located outside the regions. 

• Grouping condition: the background segments were vertical and segments in- 
side the regions were oriented at 45 or 135 deg, depending on which region of 
symmetry they belonged to. 

• Non-grouping condition: the background segments and segments inside a re- 
gion were both vertical. 

Control. To control for possible orientation effects, another grouping condition, 
where background segments were either oriented at 45 or 135 deg, and segments 
inside the symmetrical region were vertical, was also used for the distance of 6.6 deg. 
Figure 3 shows an example of a stimulus that was used to control for orientation 
effects. It is not possible to perform the same type of control for the non-grouping 
condition since inclined segments (45 or 135 deg) cannot be used at the same time in 
the background and in the regions of symmetry without creating texture segregation. 
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I 

Figure 2. Examples of stimuli used: (a) symmetrical with grouping, (b) asymmetrical with grouping, 
and (c) symmetrical without grouping. The stimuli are shown with a distance of 6.6 deg of visual angle 
between the regions of symmetry. 

Procedure. Five right-handed subjects with normal or corrected-to-normal vision 
were tested. They all agreed to perform the experiment without any remuneration. 
Subjects were students or staff members with the Perception and Robotics Laboratory 
at Ecole Polytechnique de Montréal or with Ecole d’optométrie at Université de 
Montréal. 

The experiment consisted in testing each subject with 7 independent blocks of 
50 images: 3 for the grouping condition, with distances between the regions of O, 6.6, 
and 13.2 deg respectively, 3 for the no-grouping condition, with the same distances 
as in the grouping condition, and 1 to control for orientation effects, with a distance 
of 6.6 deg (Fig. 3). In each block, the probabilities of presentation for symmetrical 
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Figure 3. Example of stimuli used to control for orientation effects: symmetrical with grouping at a 
distance of 6.6 deg of visual angle. 

and asymmetrical images were equal. The images were randomly generated but, 
for each block, all subjects were shown the same set of images in the same order. 
However, the order of presentation of blocks varied between subjects. This technique 
of presentation, for which the distance between the regions of symmetry is constant 
in each block, permits the elimination of position uncertainty since the subjects knew 
the exact position of the target regions at all times. 

Subjects were asked to detect the presence or absence of symmetry in the images 
that were presented. They were told that the accuracy of their responses was important 
and that reaction times were not measured. They had to look at the fixation point 
in the middle of the screen and were told not to move their eyes. The presentation 
time of each image was 1.5 s. A new image was not shown until a response was 
recorded. The experimenter monitored the eye movements of the subjects and told 
them whenever they were moving their eyes. Before each block, example images 
were shown. During this presentation, the experimenter told the subjects whether 
or not the images were symmetrical. Subjects then performed practice trials during 
which they had to assess if the 10 presented images were symmetrical or not. Finally, 
for each block, subjects were tested with 50 images. It took, on average, 1 h and 
10 min to perform the experiment (10 min per block). 

Data analysis. The individual data at each distance, in terms of symmetry-detection 
rate as a function of false-positive response, are shown in Fig. 4. Figure 5 presents the 
averaged symmetry-detection rate of the 5 subjects as a function of grouping condition 
and distance. For the grouping condition, performance as a function of the distance 
between the regions of symmetry slightly decreases with increasing distance, while 
for the no-grouping condition, performance is V-shaped: high at a distance of O deg, 
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Figure 4. Comparison of symmetry detection rate between the grouping and the non-grouping conditions 
as a function of false positive detection rate at distances of O, 6.6, and 13.2 deg of visual angle (a, b and 
c respectively). 

significantly lower at 6.6 deg, and high again at 13.2 deg, consistent with the shape 
but not the range of Barlow and Reeves, (1979) data. Results of a two-factor ANOVA 
indicate that the effect of grouping is significant (F(1, 24) = 26.35, p < O.OOl) ,  the 
effect of distance is significant (F(2,24) = 36.40, p < 0.001) and the interaction 
grouping-distance is significant (F(2,24) = 20.37, p < 0.001). Results of a post- 
hoc Tukey test also show that, even if there is a monotonic decrease of symmetry 
detectability as a function of the distance in the grouping condition, this effect is not 
significant. 

At a distance of O deg, performance is almost perfect for all subjects, regardless of 
the condition. At a distance of 6.6 deg, performance for the grouping condition is 
much better than for the non-grouping condition. This difference in detection cannot 
be attributed to a criterion shift because the false-positive rate remained fairly constant. 
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not vary. We propose rather that grouping effects were present at the outer borders 
of the image. These groupings, due to segregation at the texture/non-texture border, 
helped the detection of symmetry at the edges. 

In summary, we propose that at distances of 0 and 13.2 deg, groupings were al- 
ready present, either along the central axis of symmetry or along the image borders, 
regardless of the grouping condition. Therefore the introduction of another grouping 
factor was superfluous. On the other hand, at a distance of 6.6 deg, no texture-related 
grouping effect based on orientation was available. Therefore, the introduction of a 
grouping factor improved symmetry-detection performance. We propose, based on 
our results, that grouping plays a significant role for symmetry detection not only 
near the central axis of symmetry, but also for non-adjacent regions of symmetry. Al- 
ternative explanations cannot account for the obtained performance for the following 
reasons. First, grouping was not an important factor for the localization of the regions 
of symmetry since, for each block of stimuli images, regions of symmetry were at 
the same position. Second, orientation effects induced by groupings did not play a 
significant role in the detection task since subjects had also to verify the segments’ 
positions in the regions of symmetry. Third, low spatial-frequency components, which 
are known to significantly affect symmetry perception, were not involved since the 
spatial-frequency content of the stimuli was similar for both conditions. Fourth, small 
groupings created by the proximity of neighboring segments did not significantly af- 
fect detection performance since they were present equally in both conditions. On , the other hand, texture segregation, which was facilitated in the grouping condition, 
improved symmetry-detection performance. 

Our findings have important theoretical implications for the elaboration of a model 
for symmetry detection. They imply that, in addition to the fact that symmetry is 
a fundamental grouping property, as suggested by Gestalt psychologists, grouping 
could be used to detect symmetry. If Julesz (1971) is correct that there are two dif- 
ferent processes for symmetry detection it could be that, in the case of dense images, 
general-purpose grouping mechanisms already used for other visual tasks perform 
the first stage of the symmetry detection process. Symmetry detection would then 
be a comparison of higher-order features obtained from grouping mechanisms. This 
hypothesis agrees with recent studies. (1) Owing to the weak organizational power 
of symmetry, other grouping factors could precede it. These factors would dominate 
symmetry, and symmetry would be used for grouping only when it is not in competi- 
tion with them. Symmetry could be useful not at the level of grouping formation, but 
at a higher level where it would be detected among groupings created on the basis of 
other factors (Pomerantz and Kubovy, 1986). (2) Grouping mechanisms already used 
for other visual functions could perform the most important part of the symmetry de- 
tection task (Pashler, 1990). (3) Symmetry detection in random-dot images could be 
accomplished in three stages, including a grouping stage (Jenkins, 1983). (4) Symme- 
try detection could be accomplished by general grouping mechanisms, and therefore, 
no special symmetry-detection mechanism needs to be postulated (Wagemans et al., 
1991). 

In the next section, we propose a computational model for symmetry detection in 
dense images. Our model agrees in principle with the results presented in this section 
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since symmetry detection is preceded by a grouping stage which permits a significant 
reduction in the number of comparisons to be performed. Before presenting our 
model, the possible strategies for symmetry detection in images are reviewed. 

3. COMPUTATIONAL MODELS 

3. I .  The possible strategies for symmetry detection 

A number of computational models for symmetry detection have been proposed, either 
to model the human visual system or to provide efficient means of detecting symmetry 
in images. Most of the proposed models for the human visual system are not detailed 
enough to elaborate algorithms that could be simulated and tested on a computer. 
For instance, Palmer and Hemenway (1978) suggest that symmetry is detected in two 
stages. The first stage consists of a fast and global analysis to select a potential axis 
of symmetry by considering all the orientations of the axis at the same time. The 
second stage consists of an explicit comparison of the two halves of the stimuli to 
detect symmetry. From a computational point of view, simulation of the first stage 
of this model is not a trivial task. 

Two principal strategies are used by most of the proposed methods for symmetry 
detection in images. The first one necessitates a systematic comparison of all the 
potentially symmetrical elements in the image (usually the individual pixels). Bigun 
(1 988) illustrates this approach by presenting a convolution operator which works 
on the brightness values, and detects various situations of local symmetry in neigh- 
borhoods of circular, linear, hyperbolic and parabolic shapes. Reisfeld et al. (1 990) 
propose, in a similar strategy, a method for the detection of various interest points in 
an image. In an attempt to model the human visual system, Royer (1981) proposes 
that symmetry relations present in a stimulus are represented integrally in a code 
consisting of classes and subclasses of symmetry. Two channels sensitive to vertical 
and horizontal orientations are used. By computing many transformations in parallel 
on the output of these channels, the type of symmetry present in an image can be 
identified. Palmer ( 1  983) also proposes a model for the human visual system. The 
visual field is covered by a multitude of local spatial analyzers working in parallel. 
Invariance under Euclidean similarity transformations applied to the output of these 
analyzers indicates symmetry relations. 

The second strategy is accomplished in two stages. First, more elaborate (and 
less dense) features than brightness values are extracted. Second, these features are 
systematically compared, in the search for symmetry relations. Wilson (199 l), for 
example, presents a system to detect local symmetry among contours extracted from 
an image by comparing key-points on each contour (local extrema of curvature, mid- 
dle points of straight sections and points of change in curvature sign). Jenkins (1983) 
proposes, as a plausible model for the human visual system, a three-stage model for 
symmetry detection in random-dot images. First, orientation uniformity of pairs of 
points is detected. Second, salient pairs are fused to form a new representation that 
corresponds to virtual lines joining the two points of each pair. Third, from this 
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new representation, symmetry is detected. The orientation of the axis of symmetry 
is determined by joining the middle points of the virtual lines. Wagemans et al. 
(1 99 1) suggest that, in addition to the first-order regularities consisting of orienta- 
tion uniformity and middle point collinearity, second-order relations between pairs of 
symmetrical elements are used to detect symmetry. These second-order regularities 
correspond to geometric regularities (symmetric trapezoid and parallelogram connec- 
tivities) between virtual lines joining pairs of points. To justify their proposal, they 
note that the same first-order relations are present for bilateral symmetry and skewed 
symmetry. Since skewed symmetry is much more difficult to detect than bilateral 
symmetry, other factors (second-order regularities) must affect symmetry detection. 

In the case of global symmetry detection in dense images, the first strategy is in- 
adequate because of the excessive amount of computation required. Since global 
symmetry involves aggregates of local elements sharing compatible symmetry rela- 
tions, it seems more appropriate to use, in accordance with the second strategy, a 
procedure that does not look immediately for instances of symmetry among local 
elements, but tries first to elicit aggregates of elements that constitute plausible candi- 
dates for global symmetry relations. Symmetry is then tested among these aggregates 
only. The advantages of such a procedure are clear: by making grouping a prerequi- 
site to symmetry detection, a substantial reduction in computational cost is achieved 
and more global levels of symmetry relations may be achieved. 

3.2. The proposed model 

In view of the experimental results reported in Section 2.2 illustrating the precedence 
and the facilitation of grouping over symmetry detection, we propose a strategy for 
bilateral symmetry detection in dense images that consists of three successive stages: 

1. a grouping stage in which clusters are formed among local elements presenting 
a sufficient level of mutual affinity; 

2. a symmetry-detection stage in which pairs of symmetrical clusters are discov- 
ered and their axes of symmetry determined; 

3.  a symmetry-subsumption stage in which an attempt is made to detect even 
more global symmetries by comparing the various axes of symmetry previously 
found. 

The strategy is computationally efficient and suitable for parallel implementation 
because only local computations are performed in the first stage, and the subsequent 
stages necessitate only a small number of comparisons (with respect to a systematic 
comparison of every element with all other elements) of higher-level features. The 
first stage involves local computations to evaluate the affinity between each local ele- 
ment and its various neighbors (relying on such properties as proximity, collinearity, 
and similarity of orientation), and the formation of clusters of elements by relaxation 
labeling. The second stage involves systematic comparisons between pairs of clusters 
in order to discover symmetrical pairs and compute the positions and orientations of 
the corresponding axes of symmetry. Clusters are compared on the basis of their 
compatibilities in orientation and dimensions. At this stage, the number of compar- 
isons should be limited due to the small number of clusters. The third stage involves 
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a fusion of the axes of symmetry previously determined. Each axis being character- 
ized by its location and orientation, a Hough-transform type of procedure (Duda and 
Hart, 1973) is used to subsume the pairs of symmetrical clusters into more global 
symmetrical structures. It is important to observe that the plausibility of our model 
for the human visual system relies on experimental results for the first stage only. 
We do not claim that the human visual system necessarily performs the same com- 
putations as the ones we propose in our model. However, our model is plausible at a 
computational level: a first stage implying massive parallel computations performed 
by a general-purpose mechanism is followed by more specific subsequent stages that 
perform computations on a smaller number of higher-level features. 

Before describing our model in more detail, it is worth mentioning that our model 
is in agreement with a recent research trend questioning the role of symmetry as 
a strong property of perceptual organization and suggesting rather that symmetry 
is detected among more abstract features obtained from general purpose grouping 
mechanisms (see Sections 2.2 and 3.1). Our model fits into this scheme, since the 
cluster-detection process can be seen as a general-purpose grouping mechanism useful 
for other visual tasks, and the cluster comparison process as a tool more specific 
to symmetry detection, which takes advantage of the small number of higher-level 
features that were created. It is also important to note that the validity of the model 
does not depend on the density of the features in the image. In fact, the term dense 
images is used to refer to texture-like images consisting of a large number of similar 
local features. 

4. IMPLEMENTATION AND RESULTS 

To illustrate the relevance and the performance of the above model we present an 
implementation for the particular case of dense images consisting of oriented line 
segments. Such images are common as intermediate representations in several fun- 
damental vision mechanisms such as shape from shading, shape from texture, shape 
from stereo or shape from motion. It is furthermore believed that, in such cases, 
global symmetry may prove to be a powerful tool of scene interpretation. 

4.1. The grouping stage 

We use here a relaxation-labeling procedure in order to coalesce clusters of mutually 
compatible oriented segments. First proposed by Rosenfeld et al. ( 1976), relaxation 
labeling is a parallel, local, cooperative and iterative process that assigns labels to 
objects, together with weights indicating the levels of confidence of each association 
between an object and a label. 

Let A = { a l ,  a2, . . . , a,} denote the set of oriented segments to be labeled and 
A; = {Ao, A*} the set of possible labels for segment ai,  where Ai = A' indicates that 
ai belongs to a cluster and hi = A '  that it does not. Let Ai,i designate the set of 
compatible pairs of labels for each pair of segments (ai,  a,,), i # j .  The four possible 
pairs represent the three following situations: ai and ai  both belong to a cluster 
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rather to create a separation between 
C2ij = {ao, o'} be the set of possible 

segments belonging to different clusters. Let 
labels for each border element bij, (wij = wo 

and aij = w1 indicate, respectively, the absence and the presence of a border element 
between segments ai and a,j). The product Aij x f i i j  represents the ensemble of 
compatible label triplets for each pair of segments (ai,  a i ) ,  i # j .  Five of the 
eight possible triplets represent the four following situations (the three other triplets 
represent incoherent situations): (1) ai and a,j belong to the same cluster and there is 
no border element between them (wij = wo, hi = hj = A'); (2 )  ai and aj belong to 
different clusters and there is a border element between them (mi,j = w l ,  hi = hj = 
A'); ( 3 )  ai or aj  belongs to a cluster while the other one does not and there is a 
border element between them (0i . j  = wl, hi # h,j); (4) neither ai nor a,j belong to a 
cluster and there is no border element between them (0 i . j  = coo, hi = hj = A'). 

Let si,j (wij, hi, h i )  represent the new compatibility function characterizing the as- 
sociations of 0 i . j  to bi,j, hi to ai and h,j to a j .  We propose the following expression 

~ 

for si.j (wi,j, hi, h j ) :  

Neighboring elements with a small orientation difference mutually encourage each 
other to belong to the same cluster and discourage the appearance of a border ele- 
ment between them (wij = wo, hi = hj = A'). Neighboring elements with a large 
orientation difference, which are each encouraged by their other neighbors to belong 
to a cluster, favor the appearance of a border element between them (mij = w1 and 
A; = h,j = A'). Whenever ai is encouraged by its neighbors to belong to a cluster, and 
a j is discouraged by its neighbors from belonging to a cluster (or the opposite), they 
favor the appearance of a border element between them (A; # hj) .  When neighboring 
elements are both discouraged by their neighbors from belonging to a cluster, they 
discourage the appearance of a border element between them (hi = hj = A'). 

Let p,k(h) be the probability of associating h with ai, and utj ( w )  be the probability 
of associating w with bij at the krh iteration. These probabilities are changed in a 
parallel and iterative fashion according to the following expressions: 

I 
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The expression for qF(A) includes the term uFj (o'), which represents the probability 
of absence of a border element. If this term was not present, two neighboring segments 
ai and aj  with a small orientation difference would mutually encourage each other 
to belong to the same cluster. However, two neighboring elements ai and a,j with a 
large orientation difference, which are each encouraged by their other neighbors to 
belong to different clusters, would mutually discourage each other from belonging to 
a cluster. This discouraging effect is undesirable and it would be preferable that each 
segment be encouraged to belong to its own cluster. Introducing the term uFj(wo) 
has precisely the desired effect: when ai and a,j have a small orientation difference, 
uFj(wo) is high and its presence does not modify the probability values. However, 
when ai and aj  have a large orientation difference, uFj(wo) is low and attenuates the 
undesirable discouraging effect. 

Figure 7 illustrates the results of the grouping process by the relaxation-labeling 
method, in the three following cases: two non-touching isolated clusters, two adjacent 
clusters, and two clusters with a smooth variation of orientation. The results are shown 
after 10 iterations, starting from a uniform label probability distribution (p'(A') = 
p'(A')  = 1/2). In this experiment, K and W were set to 0.05 deg-' and 20 deg 
respectively, and the label probability threshold was set to 0.9. As one can observe, 
the clusters are properly separated for the three cases. It is important to note that the 
role of border elements is not to delineate exactly the shape of the clusters but rather 
to create a separation between them. Even if some isolated lines also show up, they 
will be eliminated when clusters are identified. 

The result of relaxation labeling is an ensemble of segments and an ensemble of 
border elements, from which clusters must be identified. Elements ai and aj  belong 
to the same cluster when they are neighbors, when pi(Ai = A') and P, j (A j  = A') are 
above the label probability threshold, and U i j ( 0 ' )  is under this threshold. All pairs 
of segments verifying these three conditions belong to the same cluster. Clusters that 
are too small (less than 5 segments) are eliminated. 

4.2. The symmetry-detection stage 

To detect instances of symmetry, the clusters resulting from the grouping stage have 
to be compared. Computational efficiency imposes the requirement to base the com- 
parisons on a representation of each cluster in terms of a limited number of global 
parameters. In the case of clusters consisting of similarly oriented line segments, 
these parameters can be the size of each cluster, as well as the mean orientation and 
the mean position of its segments. However, clusters with smooth variations of orien- 
tations, such as the ones in Fig. 7f, cannot be represented by the mean orientation of 
their segments. Consequently, one must subdivide such clusters into smaller compo- 
nents with reduced orientation variations, while retaining their common identity for 
further restoration. Clusters are then systematically compared on the basis of location, 
orientation and size, in order to detect eventual symmetrical pairs. 

4.2. I .  Cluster subdivision. The eventual subdivision of clusters into subcompo- 
nents of small orientation variations is performed by means of a relaxation-labeling 
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Figure 7. Original images (a, c, e), and the corresponding results of the grouping process (with border 
elements) (b, d, f). 
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method similar to the one presented in Section 4.1. Let A = {al ,  a2, . . . , a,} now 
designate only the line segments belonging to the cluster under consideration, and 
Ai = {Ao, . . . , hk} be a set of labels representing k successive orientation intervals 
of width a = n/k  between 0 and n (we choose here k = 12). At the end of 
the relaxation procedure, each label will eventually characterize a component whose 
mean orientation falls within the range of orientations it represents. The compatibility 
function between neighboring segments ai and a,j is defined as: 

The parameters are the same as in Section 4.1. For each line segment, the initial 
probability distribution is a normal distribution centered on the label corresponding to 
the segment orientation, with a small standard deviation. Figure 8 illustrates the results 
of the cluster-subdivision process applied to Fig. 7f, after 20 iterations. As desired, 
the original clusters with smooth variations of orientations have been subdivided into 
components with smaller orientation variations. Figures 7b and 7d are not modified 
by the cluster-subdivision process. 

4.2.2. Cluster comparison. Each cluster is represented by its size as well as the 
mean position and the mean orientation of its segments. The size information is made 
of two measurements, namely the largest distances between two line segments in the 
mean orientation direction and in the direction normal to the mean orientation. 

Clusters are systematically compared by searching for pairs of clusters of compa- 
rable sizes, whose orientations are identical under a reflection transformation around 
the medial axis of the line joining the cluster centers. Since the strategy is meant to 
detect approximate symmetry, exactness is not imposed for the preceding relations. 
Orientations and sizes need to correspond within certain tolerances. A reasonable 
tolerance on the orientations is the parameter W used in the compatibility function, 
since it represents the maximal amount of orientation difference characterizing the 
affinity between line segments. The tolerance used for size comparisons is twice the 
length of the line segments. 

4.3. The symmetry-subsumption stage 

Having compared all clusters or subcomponents, the last stage consists of trying to 
elicit global symmetry relations involving several pairs of clusters or components. In 
order to do so, one must simply compare the axes of symmetry established during 
the symmetry-detection stage, grouping collinear axes and the corresponding cluster 
pairs. A Hough-transform technique is used for that purpose (Duda and Hart, 1973), 
each axis being parameterized according to its distance r to a fixed point and its 
orientation 0. The resolution of the Hough transform accumulator is chosen in order 
to allow sufficient tolerances on r and 0 (in our experiments 1/30 of the image size 
and 0.1 rad, respectively). 
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' I /  

Figure 8. Results of the cluster subdivision process applied to the right cluster (a-f) and to the left 
cluster (g-1) of Fig. 7f. 

Figure 9 illustrates the final results of the method. As one can observe, symmetry 
was detected in the case of Figs 7a, 7c, and 7e. Figure 9d illustrates an image 
containing two symmetrical regions, in which grouping cannot be achieved. Symmetry 
was not detected in this image, a fact which is in agreement with human symmetry 
perception. 

5. CONCLUSION 

Detecting symmetry in images is interesting because of the many possible roles that 
this property could play. One controversial issue concerns the role of symmetry as 
a grouping property. Gestalt psychologists suggest that symmetry is a fundamental 
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Figure 9. Final results of the method applied to images 7a, 7c and 7e respectively (a, b, c); (d) an image 
containing symmetrical regions in which grouping cannot be achieved and for which symmetry was not 
detected. 

grouping property of perceptual organization, while recent studies suggest rather that 
symmetry might be detected among higher level features, created on the basis of other 
grouping properties. 

We have reported here a psychophysical experiment conducted in order to investigate 
this question. Results of the experiment show that the task of detecting symmetry is 
significantly easier when the elements in the stimuli can be grouped together according 
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to properties such as similarity of orientation and proximity, and thus support the 
hypothesis that grouping precedes symmetry detection. 

As in the case of other visual tasks (e.g. motion perception, shape perception, object 
recognition), more than a single mechanism may underly the ability of the human 
visual system to detect symmetry. Julesz (1 97 1) has suggested two mechanisms for 
symmetry detection, one underlying detection in dense stimuli and the other suited 
for larger-scale stimuli. 

We have proposed a three-stage computational model for the detection of symmetry 
in field-type dense images. In the first stage, relaxation labeling is used to group 
primitive elements of similar properties into a small number of clusters. This grouping 
stage may also be useful for other visual tasks. Pairs of clusters are then compared 
in the second stage of the model in order to establish local symmetry axes. These 
symmetry axes are then aggregated in the third stage (using Hough transform) to form 
global symmetry relations. 

The model is in good agreement with human symmetry perception in dense images, 
in the sense that it deals not only with exact symmetry, but also with approximate 
symmetry. The reliance upon a preliminary grouping stage, consisting of local, coop- 
erative computations, enables a significant reduction of the computational load entailed 
for the process as a whole (compared to a more direct approach to the problem). 

The model has been presented and implemented in the context of texture images, 
providing satisfactory results. Other possible domains of relevance are gradient fields, 
optical flow fields or 2 i D  representations. Indeed, interesting questions relate to the 
use of symmetry properties in the segmentation and interpretation of motion fields, or 
in the extraction of lighting conditions and shape information from needle diagrams 
produced by shape from shading algorithms. In the context of human symmetry 
perception, further studies are also required to investigate the relationship between 
grouping and symmetry detection, and the effect grouping may have on the complexity 
of the processes involved. 
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